[Total No. of Questions: 09]

Uni. Roll No.

7 7 [[] [Total No. of Pages: 03]

Program: B.Tech. (Batch 2018 onward)
Semester: 4th

Name of Subject: Hydrology and Water Resources Engineering

Subject Code: PCCE – 107 Paper ID: 16178

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

- 1) Parts A and B are compulsory
- 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part -

[Marks: 02 each]

- Q1 a) Explain Hydrological cycle with a neat sketch.
 - b) Write down the steps to determine optimum number of rain gauges required to be installed in a catchment.
 - c) What are the causes of water logging?
 - d) Why there is a need to provide lining in the canals?
 - e) How will you separate Base flow from hydrograph of a river?
 - f) Determine the dimensions of elementary profile of a low gravity dam.

Part - B

[Marks: 04 each]

- Q2. Discuss in detail the factors influencing evaporation?
- Q3. For a catchment area of 8.6 sq. Km, the following mass curve of rainfall of 4 hr storm is given below. Determine the effective rainfall hyetograph and the volume of direct runoff from the catchment due to the above storm, taking φ index of the catchment as 0.8 cm/hr.

Time from start of storm (h)	0	0.5	1	1.5	2	2.5	3	3.5	4
Accumulated rainfall (cm)	0	4	1.1	2.3	3.8	4.8	5.6	6.2	6.7

Q4. Explain different techniques of water distribution in farms. Also discuss advantages and disadvantages of different techniques.

Page 1 of 3

EVENING

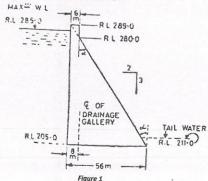
P.T.O.

2 7 JUN 2022

- Q5. Define duty and delta; also derive the relation between them. Find delta for a crop when its duty is 934 hectares per cumec on field. The base period of this crop is 128 days.
- Q6. Discuss in detail Kennedy's silt theory
- Q7. For a river, the estimated flood peaks for two return periods by the use of Gumbel's method are as follows:

Return period(Years)	Peak flood (cumecs)
50	40,809
100	46,300

What flood discharge in this river will have a return period of 500 years?


Part - C

[Marks: 12 each]

- Q8. Figure 1 shows the section of gravity dam built of concrete. Calculate
 - Maximum vertical stresses at the heel and toe of the dam.
 - b) The major principle stress at toe of the dam.
 - c) The intensity of shear stress on a horizontal plane near the toe.

Take wt. of concrete =2.4 t/m³ Neglect earthquake effects.

Take allowable stress in concrete as 2500 KN/m³.

OR

An earth dam made of homogeneous material has the following data: Coefficient of permeability of dam material = 8×10^{-3} cm/sec.

Level of top of dam Level of deepest river dam

= 194.00 m

H.F.L. of reservoir

= 180.00 m = 192.00 m

Width of top of dam

= 4.0 m Page 2 of 3 Upstream slope

= 2.5:1

= 2:1

Downstream slope Calculate the seepage per m length through the body of the dam. 27 JUN 2022

Q9. The ordinates of a 6-h unit hydrograph are as given below:

Time	6-h UH ord.(m³/s)	Time	6-h UH ord.(m³/s		
0	0	36	66		
6	20	42	50		
12	60	48	32		
18	150	54	20		
24	120	60	10		
30	90	66	0		

Derive the flood hydrograph due to the storm given below.

Time from beginning of storm(h)	0	6	12	18
Accumulated rainfall(cm)	0	4	5	10

The ϕ index for the storm can be assumed to be 0.167 cm/h. Assume base flow to be $20m^3/s$ constant throughout.

OR

Given a 2 hr. Unit hydrograph, find the 3 hr. unit hydrograph from the catchment.

Time	2-hr UH (cumecs)	Time	2-hr UH (cumecs)	Time	2-hr UH (cumecs)
0	0	8	120	16	32
1	10	9	105	105 17	
2	20	10	90	18	20
3	40	11	80	19	15
4	60	12	70	20	10
5	105	13	60	21	5
6	150	14	50	22	0
7	135	15	41	No. of the last	S. F. INCOLO.

Page 3 of 3